Novel Genes Involved in Controlling Specification of Drosophila FMRFamide Neuropeptide Cells.
نویسندگان
چکیده
The expression of neuropeptides is often extremely restricted in the nervous system, making them powerful markers for addressing cell specification . In the developing Drosophila ventral nerve cord, only six cells, the Ap4 neurons, of some 10,000 neurons, express the neuropeptide FMRFamide (FMRFa). Each Ap4/FMRFa neuron is the last-born cell generated by an identifiable and well-studied progenitor cell, neuroblast 5-6 (NB5-6T). The restricted expression of FMRFa and the wealth of information regarding its gene regulation and Ap4 neuron specification makes FMRFa a valuable readout for addressing many aspects of neural development, i.e., spatial and temporal patterning cues, cell cycle control, cell specification, axon transport, and retrograde signaling. To this end, we have conducted a forward genetic screen utilizing an Ap4-specific FMRFa-eGFP transgenic reporter as our readout. A total of 9781 EMS-mutated chromosomes were screened for perturbations in FMRFa-eGFP expression, and 611 mutants were identified. Seventy-nine of the strongest mutants were mapped down to the affected gene by deficiency mapping or whole-genome sequencing. We isolated novel alleles for previously known FMRFa regulators, confirming the validity of the screen. In addition, we identified novel essential genes, including several with previously undefined functions in neural development. Our identification of genes affecting most major steps required for successful terminal differentiation of Ap4 neurons provides a comprehensive view of the genetic flow controlling the generation of highly unique neuronal cell types in the developing nervous system.
منابع مشابه
Specification of Neuropeptide Cell Identity by the Integration of Retrograde BMP Signaling and a Combinatorial Transcription Factor Code
Individual neurons express only one or a few of the many identified neurotransmitters and neuropeptides, but the molecular mechanisms controlling their selection are poorly understood. In the Drosophila ventral nerve cord, the six Tv neurons express the neuropeptide gene FMRFamide. Each Tv neuron resides within a neuronal cell group specified by the LIM-homeodomain gene apterous. We find that t...
متن کاملIndependent roles of the dachshund and eyes absent genes in BMP signaling, axon pathfinding and neuronal specification.
In the Drosophila nerve cord, a subset of neurons expresses the neuropeptide FMRFamide related (Fmrf). Fmrf expression is controlled by a combinatorial code of intrinsic factors and an extrinsic BMP signal. However, this previously identified code does not fully explain the regulation of Fmrf. We have found that the Dachshund (Dac) and Eyes Absent (Eya) transcription co-factors participate in t...
متن کاملModulation of Locomotion and Reproduction by FLP Neuropeptides in the Nematode Caenorhabditis elegans
Neuropeptides function in animals to modulate most, if not all, complex behaviors. In invertebrates, neuropeptides can function as the primary neurotransmitter of a neuron, but more generally they co-localize with a small molecule neurotransmitter, as is commonly seen in vertebrates. Because a single neuron can express multiple neuropeptides and because neuropeptides can bind to multiple G prot...
متن کاملRegulation of Drosophila FMRFamide neuropeptide gene expression.
Physiologically important peptides are often encoded in precursors that contain several gene products; thus, regulation of expression of polypeptide proteins is crucial to transduction pathways. Differential processing of precursors by cell- or tissue-specific proteolytic enzymes can yield messengers with diverse distributions and dissimilar activities. FMRFamide-related peptides (FaRPs) are pr...
متن کاملSqueeze involvement in the specification of Drosophila leucokinergic neurons: Different regulatory mechanisms endow the same neuropeptide selection
One of the most widely studied phenomena in the establishment of neuronal identity is the determination of neurosecretory phenotype, in which cell-type-specific combinatorial codes direct distinct neurotransmitter or neuropeptide selection. However, neuronal types from divergent lineages may adopt the same neurosecretory phenotype, and it is unclear whether different classes of neurons use diff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 200 4 شماره
صفحات -
تاریخ انتشار 2015